With cs_get_n() one can extract the number of participants
used in a clinical significance analysis from a cs_analysisobject. This
may depend on the clinical significance approach and if missing values were
present in the dataset. For all individual analyses, missing values are
handled by list-wise deletion. Consequently, individuals with a missing pre
or post intervention score will be omitted from the analyses.
Arguments
- x
A cs_analysis object
- which
Which n should be returned? Available options are
"all", (the default) returns the number of participants in both, the original and used data set"original", number of participants in the original dataset"used", number of participants in the used data set, so after conversion to wide format and omitting cases with missing values
See also
Extractor functions
cs_get_augmented_data(),
cs_get_data(),
cs_get_model(),
cs_get_reliability(),
cs_get_summary()
Examples
# n can be extracted for every approach
cs_results_anchor <- claus_2020 |>
cs_anchor(
id,
time,
bdi,
pre = 1,
post = 4,
mid_improvement = 9
)
cs_results_distribution <- claus_2020 |>
cs_distribution(
id,
time,
bdi,
pre = 1,
post = 4,
reliability = 0.80
)
cs_results_statistical <- claus_2020 |>
cs_statistical(
id,
time,
bdi,
pre = 1,
post = 4,
m_functional = 8,
sd_functional = 8,
cutoff_type = "c"
)
cs_results_combined <- claus_2020 |>
cs_combined(
id,
time,
bdi,
pre = 1,
post = 4,
reliability = 0.80,
m_functional = 8,
sd_functional = 8,
cutoff_type = "c"
)
cs_results_percentage <- claus_2020 |>
cs_percentage(
id,
time,
bdi,
pre = 1,
post = 4,
pct_improvement = 0.3
)
cs_get_n(cs_results_anchor)
#> # A tibble: 1 × 3
#> n_original n_used percent_used
#> <int> <int> <dbl>
#> 1 43 40 0.930
cs_get_n(cs_results_distribution)
#> # A tibble: 1 × 3
#> n_original n_used percent_used
#> <int> <int> <dbl>
#> 1 43 40 0.930
cs_get_n(cs_results_statistical)
#> # A tibble: 1 × 3
#> n_original n_used percent_used
#> <int> <int> <dbl>
#> 1 43 40 0.930
cs_get_n(cs_results_combined)
#> # A tibble: 1 × 3
#> n_original n_used percent_used
#> <int> <int> <dbl>
#> 1 43 40 0.930
cs_get_n(cs_results_percentage)
#> # A tibble: 1 × 3
#> n_original n_used percent_used
#> <int> <int> <dbl>
#> 1 43 40 0.930
# Get your desired n
cs_get_n(cs_results_anchor, which = "all")
#> # A tibble: 1 × 3
#> n_original n_used percent_used
#> <int> <int> <dbl>
#> 1 43 40 0.930
cs_get_n(cs_results_anchor, which = "original")
#> # A tibble: 1 × 1
#> n_original
#> <int>
#> 1 43
cs_get_n(cs_results_anchor, which = "used")
#> # A tibble: 1 × 1
#> n_used
#> <int>
#> 1 40
